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Data on graphs

Non oriented graph

G = (X ,w),

X set of vertices, n = |X | ;
w : X × X 7→ R+ weight function ;
For (x , y) ∈ X × X , (x , y) is an edge if and only if w(x , y) > 0.

Assumption :

w(x , y) = w(y , x).

Laplacian of the graph L

L(x , y) = w(x , y) if x ̸= y

w(x) :=
∑

y ̸=x w(x , y) .
L(x , x) = −w(x).

(−L) is a positive symetric matrix with eigenvalues :

λ0 = 0 ≤ λ1 ≤ · · · ≤ λn−1.
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Examples

Electrical grid
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Examples

Street network
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Examples

Discretized surfaces (data J. Lefèvre, LIS Marseille)
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Sparsity of a signal

Signal on graph

A signal on G is a function f : X → R identified with a vector of Rn.
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Sparsity of a signal

Signal on graph

A signal on G is a function f : X → R identified with a vector of Rn.

A smooth signal (data J.M Lina, Université de Montréal)
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Sparsity of a signal

Signal on graph

A signal on G is a function f : X → R identified with a vector of Rn.

Aim.

We want to build a multiresolution analysis of signals defined on a generic graph, i.e.
to encode f ∈ Rn as a sum of a general trend, the approximation, and oscillations at
different scales, the details :
our signal f is encoded through n coefficients structured as

[ fk︸︷︷︸, g1, · · · , gk︸ ︷︷ ︸ ] .

approximation details

we would like [g1, · · · , gk ] to be a sparse vector whenever f has some ”regularity”.
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Classical scheme on Rn.

An iterative algorithm made of filtering and subsampling.

Start with f0 = f .

Step 1 : Approximation and detail at scale 1.
▶ Filtering to separate low and high frequency parts of the signal.

local ”mean” : f̃1(m) = (h ⋆ f0)(m) for the approximation.
local ”gradient” : g̃1(m) = (g ⋆ f0)(m) for the detail.

f0 ∈ Rn is coded by (f̃1, g̃1) ∈ Rn × Rn.

▶ Subsampling by keeping one out of two points : f1(m) = f̃1(2m), g1(m) = g̃1(2m).

f0 ∈ Rn is coded by (f1, g1) ∈ R
n
2 × R

n
2 .

▶ h and g are well chosen to have perfect reconstruction of f from (f1, g1)
Iterate.
f0(size n) → f1(size n/2) → f2(size n/22) ... → fk(size n/2k)

↘ ↘ ... ↘
g1(size n/2) g2(size n/22) ... gk(size n/2k)
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Example
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one step or two steps of the scheme
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Basis functions

One step ⇐⇒ definition of a basis of Rn :

{ϕm, 0 ≤ m ≤ n
2
}
⋃
{ψm, 0 ≤ m ≤ n

2
}

Approximation coefficients :
f1(m) =< ϕm, f0 > ;

Detail coefficients :
g1(m) =< ψm, f0 > ;

Needed properties to generalize the scheme :

we want to find basis functions with good

Localization in space ;

Localization in frequency ;

Conditioning index, to be able to
reconstruct signal from the coefficients.
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Multiresolution scheme

Iterating using the same scheme

f0(size n) → f1(size n/2) → f2(size n/22) ... → fk(size n/2k)
↘ ↘ ... ↘

g1(size n/2) g2(size n/22) ... gk(size n/2k)

Needed properties to generalize on a graph :

A sequence of subgraphs on which the approximation will be decomposed
f0 (on G0 = G) → f1 (on G1) → f2 (on G2) ... → fk (on Gk)

↘ ↘ ... ↘
g1 g2 ... gk

We want G1, G2, . . .Gk to be a sequence of subgraphs which keep as much as
possible the important features of the original graph.
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Generalization on graphs

Some questions :

Sampling problem : How can we sample ”one out of two points” ? How do we
choose a ”well spread” subset X̄ of X ?

Graph structure problem : how do we choose the new graph on which we iterate the
scheme ?

Filtering problem.

Proposed answers to these questions :

→ Subsampling a graph : find a random set with garanties that in some sense it is well
spread on the graph

→ Filtering the data : compute local means.

→ Compute the weights between the points of the subsampling set, which means
compute the coefficients of a Laplacian matrix based on the subsampling set.
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A non exhaustive bibliography

Coifman et Maggioni : diffusion wavelets (2006).

Hammond, Vandergheynst et Gribonval (2010) : a wavelet frame as a discretization
of a continuous wavelet transform.
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Setting

Markov process in continuous time

We have

a Laplacian matrix. Lf (x) =
∑
y∈V

w(x , y) (f (y)− f (x)) for any vector (f (x))x∈X .

We denote X = (Xt , t ≥ 0) a Markov process with generator L : X jumps from x to
y with probability w(x , y)/w(x) after a random time of law E(w(x)) .
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Subsampling. Choosing a well-spread subset X̄ of X
Wilson’s algorithm :

Choose a point x ∈ X . From x , run a
Markov process X with generator L
until a random time Tq, an
exponential time with parameter q.
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Choose a point x ∈ X . From x , run a
Markov process X with generator L
until a random time Tq, an
exponential time with parameter q.

Erase the loops.

Choose a point outside the drawn
trajectory. Run X and stop it at an
exponential time with parameter q, or
when it reaches the drawn trajectory.
Erase the loops.

Go on until exhaustion of X .

We end up with an oriented spanning forest Φq.

Our proposal to choose ”one out of two points”.

X̄ = set of the trees roots = ρ(Φq).
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Subsampling. Choosing a well-spread subset X̄ of X

Properties of this set (Wilson (96)).

Let (X (t), t ≥ 0) be a Markov process with generator L and Tq ∼ E(q). Set

Kq(x , y) = q(qId− L)−1(x , y) = Px [X (Tq) = y ] .

ρ(Φq) is a determinantal process with kernel Kq :
∀A ⊂ X , P [A ⊂ ρ(Φq)] = detA(Kq).

|ρ(Φq)| is distributed as the sum of independent Bernoulli with parameters q
q+λi

.
Hence,

m = E [|ρ(Φq)|] =
∑n−1

i=0
q

q+λi
.

As a determinantal process, the points in ρ(Φq) repulse one each other :

For x ̸= y , P [y ∈ ρ(Φq)|x ∈ ρ(Φq)] ≤ P [y ∈ ρ(Φq)]

Moreover (Avena & Gaudillière (17)), let Hρ(Φq) the hitting time of ρ(Φq) :

E
(
Ex

[
Hρ(Φq)

])
does not depend on x .

In some sense, the points of ρ(Φq) are well spread in X .
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Examples

Set of roots for small q. About 10% of the points are kept.
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Examples.

Set of roots for large q. About 2/3 of the points are kept.
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Subgraph and filtering.

Issues :

We want to compute a subgraph G1 = {X1,L1} and f1 = Λ1f defined on X1 such that

X1 = ρ(Φq) is well spread on the graph

f1 is smooth if f is smooth so that L1f1(x̄) = L1Λ1f (x̄) is small.

→ This is satisfied if L1Λ1f (x) = Λ1Lf (x) and more generally if

L1Λ1 = Λ1L

our goal :

find exact or approximate solutions of L1Λ1 = Λ1L (Intertwining equation, Rogers &
Pitman (81), Diaconis & Fill (90)).

Avoid diagonalization of the Laplacian.
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Weighting and Filtering : Markov intertwining

Markov intertwining (Rogers & Pitman (81), Diaconis & Fill (90)) :

A way to link two Markov processes on different state spaces :

ΛL = L̄Λ ,

where

L is a Markov generator on X ;

L̄ is a Markov generator on X̄ ;

Λ is a rectangular matrix indexed by X̄ × X with positive entries : νx̄ = Λ(x̄ , ·) is a
probability measure on X .

Why is it useful for us ?

It provides a natural choice of the weights on X̄ : w̄(x̄ , ȳ) = L̄(x̄ , ȳ).
It provides a natural choice of the approximation coefficients : f̄ (x̄) = νx̄(f ) = Λf (x̄).
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Weighting and Filtering : Markov intertwining

Our goal : Given X̄ ⊂ X , find an approximate solution (Λ, L̄) to ΛL = L̄Λ such
that

L̄ is symmetric.

The (νx̄ ; x̄ ∈ X̄ ) are ”well-localized” in space (non overlapping), to get good
reconstruction.

The (νx̄ ; x̄ ∈ X̄ ) are ”well-localized” in frequency, to separate high and low
frequency parts of the signal.

L̄ and Λ are easy to compute (we do not want to compute the spectral
decomposition of L).
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Weighting and Filtering : Markov intertwining

Our proposal. Assume X̄ ⊂ X and q′ > 0 are given.

For x̄ ∈ X̄ and y ∈ X ,
νx̄(y) = Λ(x̄ , y) := Kq′(x̄ , y) = q′(q′Id− L)−1(x̄ , y) = Px̄ [X (Tq′) = y ].

For x̄ ∈ X̄ and ȳ ∈ X̄ ,
P̄(x̄ , ȳ) := Px̄

[
X (H+

X̄ ) = ȳ
]
, L̄ = α(P̄ − Id),

where H+
X̄ is the return time of the process X in X̄ .

L̄ is computed as a Schur complement.

Definition of the approximation and detail coefficients.

For x̄ ∈ X̄ , f̄ (x̄) = νx̄(f ) = Kq′ f (x̄).

For x̆ ∈ X̆ , f̆ (x̆) = (Kq′ − Id)f (x̆).

Some comments.

When q′ ≪ 1, Kq′(x̄ , ·) ≃ µ is well frequency-localized, is a solution to the
intertwining relation, is poorly space-localized.

When q′ ≫ 1, Kq′(x̄ , ·) ≃ δx̄ is well space-localized. The frequency localization is
lost, and depends on the choice of the subset X̄ .
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L̄ is computed as a Schur complement.

Definition of the approximation and detail coefficients.

For x̄ ∈ X̄ , f̄ (x̄) = νx̄(f ) = Kq′ f (x̄).

For x̆ ∈ X̆ , f̆ (x̆) = (Kq′ − Id)f (x̆).

Some comments.

When q′ ≪ 1, Kq′(x̄ , ·) ≃ µ is well frequency-localized, is a solution to the
intertwining relation, is poorly space-localized.

When q′ ≫ 1, Kq′(x̄ , ·) ≃ δx̄ is well space-localized. The frequency localization is
lost, and depends on the choice of the subset X̄ .
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Example of one νx̄

small q′
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Example of one νx̄

large q′
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Some additional results

An explicit reconstruction formula.

f =

(
IdX̄ − 1

q′ L̄ LX̄ X̆ (−LX̆ X̆ )−1

(−LX̆ X̆ )−1LX̆ X̄ q′L−1

X̆ X̆ − IdX̆

)(
f̄

f̆

)
= R̄ f̄ + R̆ f̆ ,

Conditioning of the reconstruction operator. Space localization.∥∥R̄∥∥∞,∞ ≤ 1 + 2 ᾱ
q′ ,

∥∥∥R̆∥∥∥
∞,∞

≤ max(α
β
; 1 + q′

γ
) .

Error in the intertwining relation. Frequency localization.∥∥L̄Λ− ΛL
∥∥
∞,∞ ≤ 2q′ α

β
.

Regularity implies small details. Jackson type inequality∥∥f − R̄0R̄1...R̄K−1fK
∥∥
∞ ≤ CK ∥Lf ∥∞ + DK ∥f ∥∞ .

with
1

β
:= max

x̄∈X̄
Ex̄

[
H+

X̄ − τ1
]
,
1

γ
:= max

x̆∈X̆
Ex̆ [HX̄ ] .
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q′ ,

∥∥∥R̆∥∥∥
∞,∞

≤ max(α
β
; 1 + q′

γ
) .

Error in the intertwining relation. Frequency localization.∥∥L̄Λ− ΛL
∥∥
∞,∞ ≤ 2q′ α

β
.

Regularity implies small details. Jackson type inequality∥∥f − R̄0R̄1...R̄K−1fK
∥∥
∞ ≤ CK ∥Lf ∥∞ + DK ∥f ∥∞ .

with
1

β
:= max

x̄∈X̄
Ex̄

[
H+

X̄ − τ1
]
,
1

γ
:= max

x̆∈X̆
Ex̆ [HX̄ ] .

Wawelet on graphs Workshop BMWs, June 2025 22 / 30



Some additional results

An explicit reconstruction formula.

f =

(
IdX̄ − 1

q′ L̄ LX̄ X̆ (−LX̆ X̆ )−1

(−LX̆ X̆ )−1LX̆ X̄ q′L−1

X̆ X̆ − IdX̆

)(
f̄

f̆

)
= R̄ f̄ + R̆ f̆ ,

Conditioning of the reconstruction operator. Space localization.∥∥R̄∥∥∞,∞ ≤ 1 + 2 ᾱ
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Choice of q and q′.

Wished Properties.

We are looking for (q, q′) such that

|ρ(Φq)| is approximately a given proportion of |X | (say between [1/2,2/3]) ;

The reconstruction error is small : ᾱ
q′ and q′

γ
small.

The intertwining error is small : q′

β
small.

A systematic procedure

Let us skip the details...

we know how to choose automatically appropriate (q, q′) from one scale to the other.

and also... we have a procedure to keep the subgraph ”sparse”
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The bases and its by by-products

You give to the algorithm

A graph

and if you wish a maximum number of levels

you end up with

a sequence of subgraphs

multiscale bases on your graph until the coarsest approximation level you decided.
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Subgraphs

(data J.M. Lina, Université de Montréal)

A transparent brain
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Subgraphs

Subgraph at level 5
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Subgraphs

Subgraph at level 7
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Subgraphs

Subgraph at level 9
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Subgraphs

Subgraph at level 11
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Subgraphs

Subgraph at level 13

Wawelet on graphs Workshop BMWs, June 2025 25 / 30



Subgraphs

Subgraph at level 16
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Choose your level of approximation

Coarse level : approximation function
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Choose your level of approximation

Fine level : approximation function
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Fine level : wavelet function
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A sparse representation of smooths signals

A smooth signal
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A sparse representation of smooths signals

Approximation with 3% of coefficients
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A sparse representation of smooths signals

Error of approximation
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Good news !

A Python toolbox should be soon available !
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