Intertwinning wavelets on graphs: a tool for the inverse problem in
E/MEG ?

Joint work with
L. Avena (Univ. di Firenze), F. Castell (I12M, Marseille), A. Gaudilliere (12M,
Marseille), C. Melot (12M, Marseille) Spécials guests: Dominique Benielli and Sasha
Duverger (Project Fosfor, CNRS initiative Open)
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Data on graphs

Non oriented graph

G = (X, w),

X set of vertices, n = |X|;

w: X x X — R weight function ;

For (x,y) € X x X, (x, y) is an edge if and only if w(x,y) > 0.

Assumption :

w(x,y) = w(y, x).

Laplacian of the graph £

L(x,y) = w(x,y)if x#y

w(x) =2, w(xy) -
L(x,x) = —w(x).

(—L) is a positive symetric matrix with eigenvalues :

A=0< ) < < A1
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Examples

Electrical grid

United States
transmission grid
Source: FEMA
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Examples

Street network

Unincorporated Township Road

= Municipal Street

== Forest/Park Road
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Examples

Discretized surfaces (data J. Lefevre, LIS Marseille)
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Sparsity of a signal

Signal on graph
A signal on G is a function f : X — R identified with a vector of R". J
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Sparsity of a signal

Signal on graph
A signal on G is a function  : X — R identified with a vector of R". J

A smooth signal (data J.M Lina, Université de Montréal)

original signal <10

-,
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Sparsity of a signal

Signal on graph

A signal on G is a function  : X — R identified with a vector of R".

Aim.

o We want to build a multiresolution analysis of signals defined on a generic graph, i.e.

to encode f € R" as a sum of a general trend, the approximation, and oscillations at
different scales, the details :

our signal f is encoded through n coefficients structured as

[\1"1:47 81, 8k ] .
—_——
approximation details
v
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Sparsity of a signal

Signal on graph

A signal on G is a function  : X — R identified with a vector of R".

Aim.

o We want to build a multiresolution analysis of signals defined on a generic graph, i.e.
to encode f € R" as a sum of a general trend, the approximation, and oscillations at
different scales, the details :
our signal f is encoded through n coefficients structured as

[\ff:/> 81, 8k ] .
————
approximation details
o we would like [g1, - , gk] to be a sparse vector whenever f has some "regularity”.
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Classical scheme on R".

An iterative algorithm made of filtering and subsampling.
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o Step 1 : Approximation and detail at scale 1.

> Filtering to separate low and high frequency parts of the signal.
local "mean” : fi(m) = (h* fy)(m) for the approximation.
local "gradient” : g1(m) = (g * fo)(m) for the detail.

fo € R" is coded by (fi, 1) € R" x R".
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Classical scheme on R”".

An iterative algorithm made of filtering and subsampling.

o Start with fy = f.
o Step 1 : Approximation and detail at scale 1.
> Filtering to separate low and high frequency parts of the signal.
local "mean” : fi(m) = (h* fy)(m) for the approximation.
local "gradient” : g1(m) = (g * fo)(m) for the detail.
fo € R" is coded by (fi, 1) € R" x R".
» Subsampling by keeping one out of two points : f;(m) = f(2m), gi1(m) = & (2m).
fo € R" is coded by (fi,81) € R3 x R3.

> hand g are well chosen to have perfect reconstruction of f from (f1, g1)
o lterate.

fo(size n) — fi(size n/2) —  h(size n/2?) ... — fi(size n/2¥)
p pY
gi(size n/2) o(size n/2%) .. g (size n/2%)
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Example

signal original f

1 T T T T T
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Basis functions

One step <= definition of a basis of R" :
{¢m, 0 < m < 3} U{Ym, 0 < m< 3}
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Basis functions

One step <= definition of a basis of R" :

{¢m, 0 <m < 23 U{Ym, 0 < m < 5}
@ Approximation coefficients :
fl(m) =< d)m; ﬁ) >
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Basis functions

One step <= definition of a basis of R" :

{¢ma0 <m< g}U{wrmo <m< g}
@ Approximation coefficients :
f(m) =< ém, fo >;
@ Detail coefficients :
gi(m) =< ¥m, fo >;
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Basis functions

One step <= definition of a basis of R" :

{¢m, 0 <m < 3} U{¢m, 0 <m < 3}
@ Approximation coefficients :
fA(m) =< ém, o >;
@ Detail coefficients :
gi(m) =< m, fo >;

Needed properties to generalize the scheme :
we want to find basis functions with good

o Localization in space;

@ Localization in frequency;

o Conditioning index, to be able to
reconstruct signal from the coefficients.
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Multiresolution scheme

Iterating using the same scheme

fo(size n) — fi(size n/2) — f(size n/2%) ... —  fi(size n/2%)
o Ry
gi(size n/2) o(size n/2%) ... gx(size n/2)
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Multiresolution scheme

Iterating using the same scheme

fo(size n) — fi(size n/2) —  fo(size n/2%) - fi(size n/2%)
o Ny
gi(size n/2) o(size n/2%) ... gx(size n/2)

Needed properties to generalize on a graph :

o A sequence of subgraphs on which the approximation will be decomposed
fo (on Go=G) — fi(onG) — £h(onG) .. — fi (on Gk)
hN hN N

81 82 8k
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Multiresolution scheme

Iterating using the same scheme

fo(size n) — fi(size n/2) —  f(size n/2?) —  fi(size n/2%)
N\ N\ o\
gi(size n/2) o(size n/2%) ... gx(size n/2)

Needed properties to generalize on a graph :

o A sequence of subgraphs on which the approximation will be decomposed

fo (on Go=G) — fi(onG) — £h(onG) .. — fi (on Gk)
N\ N\ N
81 82 8k
o We want Gi, Gy, ... Gk to be a sequence of subgraphs which keep as much as

possible the important features of the original graph.
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Generalization on graphs

Some questions :
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Generalization on graphs

Some questions :

o Sampling problem : How can we sample "one out of two points” 7 How do we
choose a "well spread” subset X of X' 7

@ Graph structure problem : how do we choose the new graph on which we iterate the
scheme ?

o Filtering problem.

Proposed answers to these questions :

— Subsampling a graph : find a random set with garanties that in some sense it is well
spread on the graph

— Filtering the data : compute local means.

— Compute the weights between the points of the subsampling set, which means
compute the coefficients of a Laplacian matrix based on the subsampling set.
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o Coifman et Maggioni : diffusion wavelets (2006).

e Hammond, Vandergheynst et Gribonval (2010) : a wavelet frame as a discretization
of a continuous wavelet transform.
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o Coifman et Maggioni : diffusion wavelets (2006).

e Hammond, Vandergheynst et Gribonval (2010) : a wavelet frame as a discretization
of a continuous wavelet transform.

Ortega : multiresolution analysis on bipartite graphs (2012)
Schuman, Faraji, Vandergheynst (2016) : Fielder vector and Kron reduction.
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We have

@ a Laplacian matrix. £f(x) = %:v w(x,y) (f(y) — f(x)) for any vector (f(x))xex-
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Setting

Markov process in continuous time
We have
@ a Laplacian matrix. £f(x) = > w(x,y) (f(y) — f(x)) for any vector (f(x))xecx-

yev

@ We denote X = (X;,t > 0) a Markov process with generator £ : X jumps from x to
y with probability w(x, y)/w(x) after a random time of law &(w(x)) .
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Subsampling. Choosing a well-spread subset X' of X
Wilson's algorithm :

e Choose 2 point x € X'. From x, run a
Markov process X with generator £
until a random time Tg, an
exponential time with parameter q.

Wihep F M 159



Subsampling. Choosing a well-spread subset X' of X

Wilson's algorithm :

e Choose 2 point x € X'. From x, run a
Markov process X with generator £
until a random time Tg, an
exponential time with parameter q.

@ Erase the loops.

Wihep F M 159



Subsampling. Choosing a well-spread subset X' of X

Wilson's algorithm :

e Choose 2 point x € X'. From x, run a
Markov process X with generator £
until a random time Tg, an
exponential time with parameter q.

@ Erase the loops.

@ Choose a point outside the drawn
trajectory. Run X and stop it at an
exponential time with parameter g, or
when it reaches the drawn trajectory.
Erase the loops.
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Subsampling. Choosing a well-spread subset X' of X

Wilson's algorithm :

e Choose 2 point x € X'. From x, run a
Markov process X with generator £
until a random time Tg, an
exponential time with parameter q.

o Erase the loops.

@ Choose a point outside the drawn
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Subsampling. Choosing a well-spread subset X' of X

Wilson's algorithm :

We end up with an oriented spanning forest .

Choose 2 point x € X. From x, run a
Markov process X with generator £
until a random time Tg, an
exponential time with parameter q.

Erase the loops.

Choose a point outside the drawn
trajectory. Run X and stop it at an
exponential time with parameter g, or
when it reaches the drawn trajectory.
Erase the loops.

Go on until exhaustion of X.
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Subsampling. Choosing a well-spread subset X' of X

Wilson's algorithm :

e Choose 2 point x € X'. From x, run a
Markov process X with generator £
until a random time Tg, an
exponential time with parameter q.

o Erase the loops.

@ Choose a point outside the drawn
trajectory. Run X and stop it at an
exponential time with parameter g, or
when it reaches the drawn trajectory.
Erase the loops.

@ Go on until exhaustion of X.

We end up with an oriented spanning forest .

Our proposal to choose "one out of two points”.

X = set of the trees roots = p(®,,).
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Subsampling. Choosing a well-spread subset X’ of X

Properties of this set (Wilson (96)).
Let (X(t),t > 0) be a Markov process with generator £ and T, ~ £(q). Set

Ko(x,y) = q(qld — £) " (x,y) = P [X(Tg) = y] .
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Properties of this set (Wilson (96)).
Let (X(t),t > 0) be a Markov process with generator £ and T, ~ £(q). Set
Kq(x,y) = q(qld — £) 7' (x,y) = Px[X(Tq) = y] .

@ p(Pg) is a determinantal process with kernel Kj :
VA C X, P[A C p(®g)] = deta(Kq).

o |p(®g)| is distributed as the sum of independent Bernoulli with parameters —%—

qt+A;”
Hence,
m=E[|p(dq)[] = Z,:ol qf)\,"
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Subsampling. Choosing a well-spread subset X' of X

Properties of this set (Wilson (96)).
Let (X(t),t > 0) be a Markov process with generator £ and T, ~ £(q). Set
Kq(x,y) = q(qld — £) 7' (x,y) = Px[X(Tq) = y] .

@ p(®g) is a determinantal process with kernel K :
VA C X, P[A C p(®g)] = deta(Kq).

o |p(®q)| is distributed as the sum of independent Bernoulli with parameters .

Hence,

m=E[|p(®g)]] = 17 75

As a determinantal process, the points in p(®) repulse one each other :

For x # y, Ply € p(®q)|x € p(Pq)] < P[y € p(Pq)]
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Subsampling. Choosing a well-spread subset X' of X

Properties of this set (Wilson (96)).
Let (X(t),t > 0) be a Markov process with generator £ and T, ~ £(q). Set
Kq(x,y) = q(qld — £) 7' (x,y) = Px[X(Tq) = y] .

@ p(®g) is a determinantal process with kernel K :
VA C X, P[A C p(®g)] = deta(Kq).

o |p(®g)| is distributed as the sum of independent Bernoulli with parameters —%—

qt+A;”
Hence,
m=E[|p(dq)[] = Z,"’;ol qfxf'

As a determinantal process, the points in p(®) repulse one each other :

For x # y, Ply € p(®q)|x € p(Pq)] < P[y € p(Pq)]

Moreover (Avena & Gaudilliere (17)), let H, ) the hitting time of p(®g) :
E (EX [Hp(¢q)]) does not depend on x.

In some sense, the points of p(®,) are well spread in X. )
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Examples

Set of roots for small q. About 10% of the points are kept.
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Examples.

Set of roots for large g. About 2/3 of the points are kept.

sanpling of_the rosts: 12265 roots on 19576 vertices
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Subgraph and filtering.

Issues :
We want to compute a subgraph Gy = {X1, L1} and fi = Aif defined on X such that
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Issues :
We want to compute a subgraph G; = {X1, L1} and fi = A:f defined on X; such that
o X1 = p(P,) is well spread on the graph
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Subgraph and filtering.
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We want to compute a subgraph G; = {X1, L1} and fi = A:f defined on X; such that
o X1 = p(Pg) is well spread on the graph
e fi is smooth if f is smooth so that £if(X) = £L1A1f(X) is small.
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LiN1 =ML

our goal :

Waihep EO M )9



Subgraph and filtering.

Issues :

We want to compute a subgraph G; = {X1, L1} and fi = A:f defined on X; such that
o X1 = p(Pg) is well spread on the graph
e fi is smooth if f is smooth so that £if(X) = £L1A1f(X) is small.

— This is satisfied if £1A:1f(x) = A1Lf(x) and more generally if

LN =ML

our goal :

o find exact or approximate solutions of £:A1 = A1 L (Intertwining equation, Rogers &
Pitman (81), Diaconis & Fill (90)).
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Subgraph and filtering.

Issues :

We want to compute a subgraph G; = {X1, L1} and fi = A:f defined on X; such that
o X1 = p(Pg) is well spread on the graph
e fi is smooth if f is smooth so that £if(X) = £L1A1f(X) is small.

— This is satisfied if £1A:1f(x) = A1Lf(x) and more generally if

LiN1 =ML

our goal :

o find exact or approximate solutions of £:A1 = A1 L (Intertwining equation, Rogers &
Pitman (81), Diaconis & Fill (90)).

o Avoid diagonalization of the Laplacian.
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Weighting and Filtering : Markov intertwining

Markov intertwining (Rogers & Pitman (81), Diaconis & Fill (90)) :

A way to link two Markov processes on different state spaces :

AL = A,

Wawelet on graphs Workshop BMWs, June 2025

18/30
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Markov intertwining (Rogers & Pitman (81), Diaconis & Fill (90)) :
A way to link two Markov processes on different state spaces :

AL = LA,
where

o L is a Markov generator on t';
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A way to link two Markov processes on different state spaces :
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where

o L is a Markov generator on t';

o [ is a Markov generator on X
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Weighting and Filtering : Markov intertwining

Markov intertwining (Rogers & Pitman (81), Diaconis & Fill (90)) :

A way to link two Markov processes on different state spaces :
AC = LA,

where
o L is a Markov generator on t';
o [ is a Markov generator on X

@ A is a rectangular matrix indexed by X' x X" with positive entries : vz = A(X, ) is a
probability measure on X.
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Weighting and Filtering : Markov intertwining

Markov intertwining (Rogers & Pitman (81), Diaconis & Fill (90)) :
A way to link two Markov processes on different state spaces :
AL = LA,
where
o L is a Markov generator on t';

o [ is a Markov generator on X

@ A is a rectangular matrix indexed by X' x X" with positive entries : vz = A(X, ) is a
probability measure on X.

Why is it useful for us?

o It provides a natural choice of the weights on X : w(X,y) = L(X, 7).

o It provides a natural choice of the approximation coefficients : £(x) = vsz(f) = Af(X).
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Weighting and Filtering : Markov intertwining

Our goal : Given X C X, find an approximate solution (A, £) to AL = LA such
that
o L is symmetric.
e The (vz; % € X') are "well-localized” in space (non overlapping), to get good
reconstruction.
@ The (vs; X € X) are "well-localized” in frequency, to separate high and low
frequency parts of the signal.

o £ and A are easy to compute (we do not want to compute the spectral
decomposition of £).
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Weighting and Filtering : Markov intertwining

Our proposal. Assume X € X and ¢’ > 0 are given.

@ Forx € X and y € X,
vz(y) = NX,y) == Ky (X,y) = ¢'(¢'ld — L)} (X,y) = Px[X(Ty) = yl.
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Weighting and Filtering : Markov intertwining

Our proposal. Assume X C X and ¢’ > 0 are given.

o ForxecXandye X,
v(y) = A%, y) == Ky (%,y) = ¢'(¢'1d = L)} (%, y) = Px [X(To) = y1.
° Foriefandyeé\?,
P(%,7) := Pz [X(HL) =], L =a(P —1d),
where H} is the return time of the process X in X
L is computed as a Schur complement.
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Weighting and Filtering : Markov intertwining

Our proposal. Assume X C X and ¢’ > 0 are given.

o ForxecXandye X,
v(y) = A%, y) == Ky (%,y) = ¢'(¢'1d = L)} (%, y) = Px [X(To) = y1.
° Foriefandyeé\?,
P(%,7) := Pz [X(HL) =], L =a(P —1d),
where Hj2 is the return time of the process X in X
L is computed as a Schur complement.

Definition of the approximation and detail coefficients.
e For x € X, (%) = vz(f) = Ky f(X).

1%

o For x € X, (X) = (K, — Id)f(X).
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Weighting and Filtering : Markov intertwining

Our proposal. Assume X C X and ¢’ > 0 are given.

@ Forx € X and y € X,
v(y) = A%, y) == Ky (%,y) = ¢'(¢'1d = L)} (%, y) = Px [X(To) = y1.
° Foriefandyef,
P(%,7) := Pz [X(HL) =], L =a(P —1d),
where H; is the return time of the process X in X
L is computed as a Schur complement.

Definition of the approximation and detail coefficients.

Some comments.

@ When ¢’ < 1, Ky (X, ) ~ p is well frequency-localized, is a solution to the
intertwining relation, is poorly space-localized.

o When ¢’ > 1, K, (X, ") =~ 05 is well space-localized. The frequency localization is
lost, and depends on the choice of the subset X

v

Wawelet on graphs Workshop BMWs, June 2025

20/30



ara¥i sy
o
S

f
e
=

Example of one vz

/

small g

21/30

Workshop BMWs, June 2025



Example of one vz
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Some additional results

An explicit reconstruction formula.

_ 17 Co(—L o) ! =
Fe Ide — ql/ﬁ Lex(—Lxx) (C) :R’f—i—f#,
(- gLy —1dy ) \F
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Some additional results

An explicit reconstruction formula.

Conditioning of the reconstruction operator. Space localization.

H/?H <1+2q3_, , HK’H Smax(%;l-}%)_

00,00 —
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Some additional results

An explicit reconstruction formula.
. ( ldy — L E»e;z(—ﬁ;zx»)_l> (
(—Lax)'Laz dLy—1dy

Conditioning of the reconstruction operator. Space localization.

¢

) _ RF 1 BF,

H/?H <1+2q5, , HK’H Smax(%;l-}%)_

00,00 —

Error in the intertwining relation. Frequency localization.

|en—c]... <245 .
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Some additional results

An explicit reconstruction formula.
fe ( Idg — %E E;E)?( Lyx)” ) (
(—Lxx) 'Laz dLY —1dg

Conditioning of the reconstruction operator. Space localization.

~he Th

) _ RF+ R,

IRl <1422 B <max(gii+ ).

0,00 T

Error in the intertwining relation. Frequency localization.
~ /
len—nc| . <2q5 .

Regularity implies small details. Jackson type inequality

Hf = RORL--RK—lfK”OO < Ck H[’fHoo + Dk ”f”oo

with

1 1
= = max Ex [H— —7'1] = :=max Ex [Hx] .
xeX vy xeX
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Choice of g and ¢'.

Wished Properties.

We are looking for (g, q’) such that
o |p(®gy)| is approximately a given proportion of |X| (say between [1/2,2/3]);

a

!
@ The reconstruction error is small : o and ‘77 small.
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Choice of g and ¢'.

Wished Properties.
We are looking for (g, q’) such that

o |p(®gy)| is approximately a given proportion of |X'| (say between [1/2,2/3]);
@ The reconstruction error is small : qg_, and ‘77/ small.

’
@ The intertwining error is small : % small.
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Choice of g and ¢'.

Wished Properties.
We are looking for (g, q’) such that
o |p(®gy)| is approximately a given proportion of |X'| (say between [1/2,2/3]);

— !
@ The reconstruction error is small : % and ‘77 small.

’
@ The intertwining error is small : < small.

B
v
A systematic procedure
Let us skip the details...
v
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Choice of g and ¢'.

Wished Properties.

We are looking for (g, q’) such that
o |p(®gy)| is approximately a given proportion of |X'| (say between [1/2,2/3]);
@ The reconstruction error is small : qg_, and ‘77/ small.

’
@ The intertwining error is small : % small.

A systematic procedure
Let us skip the details...

@ we know how to choose automatically appropriate (g, g’) from one scale to the other.
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Choice of g and ¢'.

Wished Properties.
We are looking for (g, q’) such that
o |p(®gy)| is approximately a given proportion of |X'| (say between [1/2,2/3]);

— !
@ The reconstruction error is small : % and ‘77 small.

’
@ The intertwining error is small : % small.

A systematic procedure
Let us skip the details...
@ we know how to choose automatically appropriate (g, g’) from one scale to the other.

@ and also... we have a procedure to keep the subgraph "sparse”
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The bases and its by by-products

You give to the algorithm
@ A graph

@ and if you wish a maximum number of levels

you end up with
@ a sequence of subgraphs

@ multiscale bases on your graph until the coarsest approximation level you decided.
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Subgraphs

(data J.M. Lina, Université de Montréal)

A transparent brain
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Subgraphs

subgraph at level 5; 1519 roots
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Subgraph at level 5
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Subgraphs

subgraph at level 7; 825 roots
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Subgraph at level 7
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Subgraphs

subgraph at level 9; 439 roots
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Subgraph at level 9
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Subgraphs

subgraph at level 11; 259 roots
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Subgraph at level 11
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Subgraphs

subgraph at level 13; 143 roots
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Subgraph at level 13
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Subgraphs

subgraph at level 16; 48 roots
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Subgraph at level 16
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Choose your level of approximation

Coarse level : approximation function

reconstruction scaling function 1826 at level 18; 13 roots
25
2
15
1
0.5
4]
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Choose your level of approximation

Coarse level : approximation function

reconstruction scaling function 5477 at level 18; 13 roots

35
25
15
0.5
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Choose your level of approximation

Coarse level : approximation function

reconstruction scaling function 7911 at level 18; 13 roots
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Choose your level of approximation

Coarse level : wavelet function

reconstruction wavelet function level 18
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Choose your level of approximation

Coarse level : wavelet function
reconstruction wavelet function level 18

-10

-15

-20
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Choose your level of approximation

Intermediate level : approximation function

reconstruction scaling function 39 at level 11; 259 rootsl,s
| l

0s
0
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Choose your level of approximation

Intermediate level : approximation function

reconstruction scaling function 349 at level 11; 259 roots
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Choose your level of approximation

Intermdiate level : approximation function

reconstruction scaling function 522 at level 11; 259 roots

16
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0.2
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Choose your level of approximation

Intermediate level : wavelet function

reconstruction wavelet function level 11

0
5
10
15
20
25
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Choose your level of approximation

Intermediate level : wavelet function

reconstruction wavelet function level 11
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Choose your level of approximation

Fine level : approximation function

reconstruction scaling function 26 at level 3; 2900 roots
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Choose your level of approximation

Fine level : approximation function

reconstruction scaling function 276 at level 3; 2900 roots
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0.4
0.2
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Choose your level of approximation

Fine level : approximation function

reconstruction scaling function 259 at level 3; 2900 roots

1.2
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0.6
0.4
0.2
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Choose your level of approximation

Fine level : wavelet function

reconstruction wavelet function level 3

2
-4
©
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Choose your level of approximation

Fine level : wavelet function

reconstruction wavelet function level 3

2
-4
6
-8
-10
12
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A sparse representation of smooths signals

A smooth signal

original signal <10
8
7
6
5
4
3
2
1
4]
-1
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A sparse representation of smooths signals

Approximation with 3% of coefficients

approximation with 259 coefficients at scale 11 <104
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A sparse representation of smooths signals

Error of approximation

error between the signal and its approximation  .10°
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Good news !

A Python toolbox should be soon available !
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