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Fréjus, June 2025

B. Torrésani M/EEG source localization 1 / 56



B. Torrésani M/EEG source localization 2 / 56



1 Introduction

2 Variational formulations: penalized least squares
Quadratic solvers
Sparse solvers
Spatial wavelets: SGW

3 Sparse Bayesian learning
Type I and type II Bayesian learning
SBL: sparse Bayesian learning

4 Some numerical results
Real data: Auditory Evoked Potentials
Simulations: evaluation

5 Outline

B. Torrésani M/EEG source localization 3 / 56



Context: M/EEG source localization/inverse problem I

Observation model :

Z0 = G0S + B0

Observations Z0[j , t]: approximately J ≈ 250 sensors, and T time samples

Unknown sources S [k , t]: cortex discretization on approximately K ≈ 10000
points k

Leadfield matrix G0 : J × K

Baseline B0 : J × T
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Context: M/EEG source localization/inverse problem II

Spatial whitening

An operation that turn baseline sensor data into samples of independent, zero
mean, unit variance random samples (ideally iid, which is true only if time
whitening is done too)

Done by a whitening matrix Υ ≈ Σ
−1/2
B , where ΣB is an estimate of the

baseline covariance matrix.

Z ←− ΥZ0 , G ←− ΥG0 , B0 ←− spatially white noise

yields spatially whitened observation model

Z = GS + B
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Goals

In the framework of distributed models

Search for spatially extended brain activity

Reduce standard biases

Obtain quantitatively relevant estimates

Sparsity

Accurately solving such an ill conditioned inverse problem is impossible,
unless the number of unknown is controlled

Insider trading: you know (or decide) in advance that relevant activity is
characterized by K ′ ≪ K variables, with K ′ ≈ J... and solve the problem in
the source subspace generated by these

Sparsity: you let your algorithm decide which ones of the variables are
relevant
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Variational formulations: penalized least squares I

Classical variational approaches solve problems of the form

S∗ = argmin
S∈RK×T

1

2
∥Z − GS∥2F +Ψθ(S)

(remember data are spatially whitened) where

Ψθ(S) attempts to favour specific behaviors, depends on a (multi)parameter θ

Equivalent to MAP estimation in a Bayesian perspective, with p(S) ∼ e−Ψθ(S).
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Quadratic penalizations I

Minimal norm estimates: MNE, wMNE,...
Quadratic penalization (gaussian prior in MAP estimate)

Ψθ(S) =
1

2
∥Γ−1/2S∥2F

Closed form, linear solution

S∗ = HZ = ΓG⊤
(
IJ + GΓG⊤

)−1

Z

, Fast computation

/ Important blurring, depth bias

/ No coupling in time

/ Choosing Γ (prior source covariance) is not so easy

▶ MNE: Γ = λ−1I, we use λMNE = ∥G0∥2F/(SNR2 − 1)Tr(ΣB0).
▶ eLORETA: data driven estimate of a diagonal Γ (provides exact localization

with zero error to test point sources).
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Quadratic penalizations II

Response to left auditory stimulus
(Black annulus: MNE-Python ”Aud-rh” label)

MNE solution: Γ = λI (data driven λ)
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Quadratic penalizations III

Response to left auditory stimulus
(Black annulus: MNE-Python ”Aud-rh” label)
eLORETA solution: data driven diagonal Γ
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Quadratic penalizations IV

Post-processing required:

Smoothing

Multiple testing

Validation by expert

Many ad hoc, more or less legal, manipulations

...
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Sparse solution I

Minimum current: MCE
Introduce sparsity in penalization:

Ψλ(S) = λ∥S∥1 = λ
∑
k,t

|S [k, t]|

, Sparsity (ℓ1 penalizations induces thresholding)

/ Too sparse: spiky behavior (depends on constraint parameter)

/ Still too superficial

/ No closed form solution, requires optimization algorithm (ISTA, FISTA, ADMM,..),
fairly slow

/ λ difficult to tune (there is a heuristics based upon SNR computation)

/ Still no coupling in time
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Sparse solution II

Response to left auditory stimulus
MCE solution, with data driven λ
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Sparse solution III

Other sparse solvers

MxNE (social sparsity): add time dependence in sources S :

Ψλ(S) = λ∥S∥21 = λ
∑
k

√∑
t

S [k, t]2

, Coupling in time (thresholding on norms ∥S [k, ·]∥2)

/ Still too sparse, with time persistent spike locations, same optimization algorithms,
λ difficult to tune. We use λMCE =

√
2λMNE

VB-SCCD: total variation based (social) sparsity (using a gradient on the cortex mesh)

Ψλ(S) = λ (ϵ∥∇S∥1 + (1− ϵ)∥S∥1)

(the 1-norm may be replaced with 21-norm)

, Extended solutions

/ Parameters λ, ϵ extremely difficult to tune
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Sparse solution IV

Response to left auditory stimulus
VB-SCCD solution, λ = λMCE, ϵ = .3

Black annulus: MNE-Python ”aud-rh” label
Red and green lines: 1% and 10% level curves
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Sparse solution V

Response to left auditory stimulus
VB-SCCD solution, λ = λMCE, ϵ = .7

Black annulus: MNE-Python ”aud-rh” label
Red and green lines: 1% and 10% level curves
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Summary

Problems:

An extremely ill conditioned inverse problem

In such cases sparsity is a good paradigm: state that the solution can be written as
a linear combination of very few ”building blocks”

Sparsity in the cortex domain yield extremely sparse solutions (for which there exist
better methods)

Parameter tuning is a real issue...

Solutions: to estimate extended brain activity

Cortical wavelets

Sparse Bayesian Learning
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Wavelets on the cortex I

The case of the plane: Oscillatory functions ψ such that a
suitable family of translates and dilates span L2(R2). Possible
constructions:

Tensor products of 1D wavelets vs 2D radial functions

Wavelet bases vs wavelet frames

ψju(x) = s−jψ
(
s−j(x − u)

)
, j ∈ Z , u ∈ Z2

In the Fourier domain

ψ̂ju(ξ) = e2iπξuψ̂(sξ)

The case of the discretized cortex surface:

No natural translation or dilation structure

Fourier transform: possible as soon as a Laplacian is
available: graph Laplacian

Mexican hat radial 2D
wavelet

B. Torrésani M/EEG source localization 19 / 56



Wavelets on the cortex II

Discretized surface:

▶ Topologically equivalent to two
spheres

▶ Triangulated (Delaunay-type
triangulation)

▶ Post-processings: topological
corrections, smoothing, mesh
refinement...

Eventually: surface of interest
represented by a graph, with edges and
vertices (mainly topological
information, unless edge lengths are
taken into account).
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Wavelets on the cortex III

Consider a symmetric graph G(V,W) with vertex set V (♯V = K), and K × K weight
matrix W. The graph Laplacian is

L = D −W with D = diag(d1, . . . dK ) , dk =
∑
i

wki .

Consider the graph Laplacian eigenvalue decomposition L = F ΞF⊤,
Ξ = diag(ξ1, . . . ξK ).

Eigenvalues 0 = ξ1 ≤ ξ2 ≤ · · · ≤ ξK interpreted as spatial frequencies

Corresponding eigenvectors {ϕ1, . . . ϕK} interpreted as Fourier modes

The graph Fourier transform (GFT) of f ∈ CK is defined by

f 7−→ f̂ = F⊤f : f̂ (k) = ⟨f , ϕk⟩

GFT is an orthogonal transform, hence invertible, norm preserving,...
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Wavelets on the cortex IV

Laplacian eigenvectors: the case of the sphere
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Wavelets on the cortex V

Graph filtering: if we have frequencies, we can create low-pass, band-pass, high-pass
filters... and wavelet filter banks

Eigenvalues (cortical frequencies) as a function of rank

Question: Do Laplacian eigenvalues qualify as frequencies ?
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Wavelets on the cortex VI

Some eigenvectors (cortical Fourier modes ?) with increasing rank
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Wavelets on the cortex VII

Graph wavelet design (Hammond, Gribonval, Vandergheynst 2011): Given functions
g = h0, h1, . . . hNs on the continuous extension [0, ξK ] of the spectrum of L set

Wn = F diag(hn(ξ1), . . . hn(ξK ))F
⊤ .

The columns of Wn are the wavelets at scale n. The concatenation W of the matrices
Wn is the wavelet matrix, with dimension K × K(Ns + 1)

W =
[
W0 W1 . . . WNs

]

Proposition

The columns of W form a frame of RK if there are constants 0 < C1 ≤ C2 s.t.

C1 ≤
Ns∑
n=0

|hn(ξk)|2 ≤ C2 , k = 1, . . .K .

Then, for all S ∈ RK , there exists A ∈ R(J+1)Ns such that S = WA.
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Wavelets on the cortex VIII

Remarks

If Ns > 0, there are infinitely many A ∈ R(Ns+1)K such that S = WA, including the
OLS solution A = (WW⊤)−1W⊤S , ... far from being the most interesting.

More interesting: find the ”optimal” A, in a sense to be defined.

The ratio C2/C1 is the condition number of the frame. For the construction given
next slide (3 wavelet scales + 1 low-pass scale, see (Hammond et al 2011))), the
condition number is about 1.5.

The construction can be modified so that C1 = C2 = 1, yields a Parseval formula.
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Wavelets on the cortex IX

Graph wavelet design (cont’d): choose g = h0 as the frequency response of a low-pass
filter, and the hn as rescaled copies of the frequency response of a reference band-pass
filter:

hn(ξ) = h(snξ) , for some s > 0 .

Frequency responses of graph wavelets (frequency = Laplacian spectrum).
Here: 1 low-pass function g = h0, and 3 band-pass functions h1, h2, h3.
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Wavelets on the cortex X

Wavelets on the primary auditory cortex:

Top left: scaling function; others: wavelets at various scales
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Wavelets on the cortex XI

Wavelets on the ventral cortex:

Top left: scaling function; others: wavelets at various scales
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SGW-based solvers I

Synthesis-based approaches: denote by A synthesis multiscale coefficients, and solve

A∗ = argmin
A

[
1

2
∥Z − G̃A∥2 + ψθ(A)

]
= argmin

A

[
1

2
∥Z − G̃A∥2 + ψθ(A)

]
, with G̃ = GW .

The estimate is then
S∗ = WA∗

Wavelets used only twice:

pre-computation of combined wavelet leadfield matrix G̃ = GW

Synthesis of the solution WA∗ after evaluation of A∗.

Choices for ψλ:

Quadratic: ψγ(A) = ∥Γ−1/2A∥22, with Γ = diag(γ) diagonal

Sparsity promoting: ψ(A) = λ∥A∥1, group sparsity ψλ(A) = λ∥A∥21
...
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SGW-based solvers II

Quadratic penalty: ψ(A) = ∥Γ−1/2A∥22, yields a closed form solution

A∗ = ΓG̃⊤
(
IJ + G̃ΓG̃⊤

)−1

Z

= ΓG̃⊤ΣZ (Γ)
−1Z

Sparsity promoting penalty: ψ(A) = λ∥A∥1, requires numerical minimization: ISTA (or
accelerated version FISTA), ADMM, ...

A(i+1) = Sλτ

[
A(i) − τ G̃⊤(A(i) − G̃Z)

]
which converges as soon as τ ≤ ∥G̃∥−2.

Sλτ is the soft thresholding operator with threshold λτ .

In all situations, the enemy is the parameter θ (can be a number λ, several numbers, a

matrix Γ,...)
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Type II Bayesian learning

Assume the T columns of Z (resp. A) are i.i.d. samples from J-dimensional (resp.
(N-dimensional, with N = K(Ns + 1)) distribution.

Previous solutions correspond to MAP estimates, also called Type I estimates

A∗ = argmax
A

p(Z |A)pθ(A)

Consider a families of distributions pθ parameterized by a set of hyper-parameters θ.
These hyper-parameters can be learned from the data along with the model parameters
using a hierarchical empirical Bayesian approach, called Type II Bayesian learning:

θ∗ = argmax
θ

pθ(Z) = argmax
θ

∫
p(Z |A)pθ(A) dA

Once θ∗ has been learned, it can be plugged in the MAP estimate.
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Sparse Bayesian Learning I

SBL corresponds to the case A ∼ N (0, Γ), with Γ = diag(γ1, . . . γK ).

Maximization of pγ(Z) boils down to minimizing a Bregman’s log det divergence

γ∗ = argmin
γ∈RN

+

[
1

T

T∑
t=1

Tr
(
Z(t)⊤ΣZ (γ)

−1Z(t)
)
+ ln det(ΣZ (γ))

]

= argmin
γ∈RN

+

[
Tr
(
CZΣZ (γ)

−1
)
+ ln det(ΣZ (γ))

]
with CZ the sample covariance matrix of observations, and ΣZ (γ) is the posterior
covariance matrix

ΣZ (γ) = IJ + G̃ΓG̃⊤

Again the estimate can be plugged in the expression of S to get

A∗ = Γ∗G̃
⊤ΣZ (γ∗)

−1Z
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Sparse Bayesian Learning II

The minimization problem to be solve is not so easy:

Tr
(
CZΣZ (γ)

−1
)

︸ ︷︷ ︸
convex

+ ln det(ΣZ (γ))︸ ︷︷ ︸
concave

Most algorithms rely on duality arguments: in CHAMPAGNE (Wipf et al 2011), write

Tr
(
CZΣZ (γ)

−1
)
= min

X∈RN×T

1

T

[
T∑
t=1

∥Z(t)− G̃X (t)∥2 +
T∑
t=1

∥Γ−1/2X (t)∥2
]

and

ln det(ΣZ (γ)) = min
Y

[
Y⊤γ − h∗(Y )

]
, h∗(Y ) = ∇γ ln det(ΣZ (γ))
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Sparse Bayesian Learning III
Hence, we end up with the following problem

(γ∗,X∗,Y∗) = argmin
γ∈RN

+,X∈RN×T ,Y∈RN

1

T

[
T∑
t=1

∥Z(t)− G̃X (t)∥2
]
+R(γ,Y )

with

R(γ,Y ) =
1

T

T∑
t=1

N∑
n=1

Xn(t)
2

γn
+ γ⊤Y − h∗(Y ) .

Block coordinate descent

Y (i)
n = G̃⊤

n ΣZ

(
γ(i)

)−1

G̃n , n = 1, . . .N

X (i)(t) = Γ(i)G̃⊤ΣZ

(
γ(i)

)−1

Z(t) , t = 1, . . .T

γ(i+1)
n =

√√√√ 1

TY
(i)
n

T∑
t=1

X
(i)
n (t)2 , n = 1, . . .N
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Sparse Bayesian Learning IV

Remarks
1 A main result (Wipf et al 2011) states that the number of nonzero diagonal entries

in γ∗ is smaller than or equal to the rank of GW , and therefore the number of
sensors J. Since γk = 0 =⇒ Ak = 0, this yields sparsity !

2 Several similar algorithms have been derived. For example McKay updates exploits
duality with respect to ln(γ) instead of γ. EM can also be used, but is extremely
slow here.

3 These algorithms have been put into the common language of MM
(Majorization-Minimization) algorithms by (Hashemi et al 2021), where proofs of
convergence to a stationary point have been given (exploiting earlier results by
Hunter & Lange 2004)

At convergence,
A∗(t) = limX (i) , S∗(t) = WA∗(t) .
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Summary

SBL approach is indeed able to obtain sparse solutions, i.e. solutions that involve a
very small number of nonzero coordinates

In the context of MEG source reconstruction, results are acceptable if the brain
activity is very focal

For extended activity, sparsity in wavelet domain does the job
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Auditory Evoked Potential dataset I

Data : reference dataset from the MNE-Python software suite.

Quote from mne-python web site : checkerboard patterns were presented to the
subject into the left and right visual field, interspersed by tones to the left or right
ear. The interval between the stimuli was 750 ms. Occasionally a smiley face was
presented at the center of the visual field...

Available data for auditory stimulation : ∼ 50 trials for each side, time-locked to
the stimulus, and averaged to increase SNR.

Whitening : spatial whitening using a baseline covariance matrix estimated by tools
from mne-python.
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Auditory Evoked Potential dataset II

Response to left auditory stimulus
Black annulus: MNE-Python ”aud-rh” label

Red and green lines: 1% and 10% level curves
eLORETA solution: data driven diagonal Γ
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Auditory Evoked Potential dataset III

Response to left auditory stimulus
Black annulus: MNE-Python ”aud-rh” label

Red and green lines: 1% and 10% level curves
SBL (in spatial domain) solution, with data driven λ: extremely sparse
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Auditory Evoked Potential dataset IV

Response to left auditory stimulus
Black annulus: MNE-Python ”aud-rh” label

Red and green lines: 1% and 10% level curves
Wavelet-SBL solution: Ns = 1
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Auditory Evoked Potential dataset V

Response to left auditory stimulus
Black annulus: MNE-Python ”aud-rh” label

Red and green lines: 1% and 10% level curves
Wavelet-SBL solution: Ns = 2
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Auditory Evoked Potential dataset VI

Response to left auditory stimulus
Black annulus: MNE-Python ”aud-rh” label

Red and green lines: 1% and 10% level curves
Wavelet-SBL solution: Ns = 3
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Evaluation metrics I

Amplitude map:

A[k] =
√
⟨S [k , ·]2⟩soi , Ã = A/

N∑
p=1

Ap .

Absolute metrics: characterize properties of a given amplitude map A
Spatial dispersion (equivalent radius)

Center of mass depth

Coifman-Wickerhauser entropy (measures sparsity)

Comparison metrics: measure discrepancies between two amplitude maps

Region Localization Error

Wasserstein distance

Distance between centers of mass

Ratio of norms (to test the amplitude of the reconstruction)
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Evaluation metrics II

Comparison with ”aud-rh” label

Ref. MNE MCE SBL L1-TV(1) L1-TV(2) w-SBL1 w-SBL2
Size 13 111 19 8 73 76 14 18
Depth 15 0.72 3.2 10.5 1.6 11.2 10.5 17.3
Entropy 4.75 12.27 1.86 1.21 10.18 11.79 5.17 6.57
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Results on simulated data I

Simulated data
Input data:

Cortical surface: vertex locations (K vertices), triangles and vertex connectivity
(adjacency matrix)

Leadfield matrix G (J × K)

Baseline covariance matrix Σ (J × J)

Input SNR ρin, defined in sensor space

Simulation protocole:

Randomly located patches, of variable depth and two different sizes.

Realistic time course

Propagate to sensors and add (realistic) baseline

Comparisons:

Run various solvers

Compute a set of validation metrics, that (hopefully) cover most relevant
information.
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Results on simulated data II

Absolute metrics: equivalent radius ∆SD

20mm patch

The number of scales in wavelet decomposition influences the spatial extension

Other solvers: far too extended solutions
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Results on simulated data III

Absolute metrics: depth, ground truth and estimated activity
20mm patch

w-SBL: depths compatible with reference.

Other solvers: too superficial
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Results on simulated data IV

Comparison metrics: 3D distance between centers of mass, ground truth and estimated activity
20mm patch

No comment !
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Results on simulated data V

MNE w-SBL1 w-SBL2 w-SBL3 L1-TV1 L1-TV20
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Comparison metrics: Wasserstein distances W1 between ground truth and estimated
20mm patch

No comment !
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Results on simulated data VI

footnotesize Comparison metrics: Ratio of L2 norms of ground truth and estimated brain
activity

20mm patch

w-SBL does quite a good job in terms of amplitudes
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Outline

1 The combination of spectral graph wavelets with SBL appears to be a good
choice for the reconstruction of extended sources.

2 Compares very favorably with concurrent approaches, with all tested metrics
(similar resuls obtained for 10mm patches)

3 No difficult parameter tuning, but...
4 The influence of wavelet parameters remain to be better understood

▶ Most notably the number of decomposition levels, which influences the
solution

▶ The choice of wavelet parameters (relative bandwidth, Laplacian,...)
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Thanks for your attention
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