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Source reconstruction

From data ... ... to sources
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Multi–dipole modelling (in 2003)

Look at the
evolution of the
field pattern and
find dipolar patterns
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Multi–dipole modelling (in 2003)

Look for the time
when it is stronger
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Multi–dipole modelling (in 2003)

Select the channels
exhibiting the
dipolar pattern
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Multi–dipole modelling (in 2003)

Fit a dipole
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Multi–dipole modelling (in 2003)

Check that the
fitted location
makes sense

Repeat the process
to identify more
sources
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In summary

• time consuming procedure

• many subjective choices

• many difficult choices

• results highly dependent on subjective choices

• perhaps the most difficult question: how many dipoles?

Can we make this procedure fully automated and statistically sound?
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Our settings: a Variable–dimension model

Let

• N be the (unknown) number of dipoles;

• r (i) the location of the i-th dipole

• q(i) the dipole moment of the i-th dipole

so our unknown x is

x = {N, (r (1), q(1)), ..., (r (N), q(N))}

x belongs to the following state–space:

X :=
⋃

N=0,1,...

{N} ×
(
DN/ ∼

)
where D is the parameter space of a single
dipole and ∼ makes all permutations equivalent
(e.g., (d1, d2) ∼ (d2, d1)).
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Our settings: a Bayesian approach

NB: not half Bayesians
find x̂ = argmax(p(x |y))

but fully Bayesian:
characterize the posterior
probability
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Why should I go fully Bayesian?

You can:

• compute best estimate

• easily include prior
information

• estimate uncertainty

• find multiple solutions [a big
part of inverse problems!]
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The dilemma

Our aim:to approximate the posterior
distribution

p(x |y)

with

x ∈ X :=
⋃

N=0,1,...

{N} ×
(
DN/ ∼

)
and y the electric/magnetic field

But: x and y depend on time! How to treat
this?

1 Dynamic dipole:
Number of dipoles and dipole locations
and moment can change every sampled
time

2 Static dipole:

Only dipole moments change in time
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Hidden Markov Models

A pair of processes:

• a Markov process X , not observed directly:

p(xt |x1:t−1) = p(xt |xt−1)

• a measurement process Y generated by X :

p(yt |x1:t , y1:t−1) = p(yt |xt)

In practice, the following graphical structure

X1 −→ X2 −→ . . . Xt

↓ ↓ ↓
Y1 Y2 Yt

9 / 37



Bayesian Filtering

Assume knowledge of:

• Initial distribution

p(x1)

• Likelihood
p(yt |xt)

• Transition kernel

p(xt |xt−1)

Simple case: approximate the filtering
distribution in a two-step algorithm:

p(xt |y1:t) =
p(yt |xt)p(xt |y1:t−1)

p(yt |y1:t−1)

p(xt+1|y1:t) =
∫

p(xt+1|xt)p(xt |y1:t)dxt

known as bootstrap filter
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Particle Filtering

Produce a sequential Monte Carlo sampling of
the filtering distributions:

• sample X
(i)
1 ∼ p(x1|X (i)

0 ) ;

• assign weigths w(X
(i)
0:1) ∝ p(y1|X (i)

1 );

• possibly resample;

• sample X
(i)
2 ∼ p(x2|X (i)

1 ) ;

• assign weigths

w(X
(i)
0:2) ∝ w(X

(i)
0:1) p(y2|X

(i)
2 );

• . . .

11 / 37



A particle filter for M/EEG

S. et al. (2009) Human Brain Mapping

Prior p(x1)

p(x1) = p(N1)
N1∏
i=1

p(r
(i)
1 )p(q

(i)
1 )

• N1 ∼ Poisson.

• p(r
(i)
1 ) dipole location uniform in

the brain.

• p(q
(i)
1 ) dipole moment Gaussian.

Likelihood p(yt |xt)

yt =
Nt∑
i=1

G (r
(i)
t ) · q(i)t + ϵt

ϵt Gaussian noise (but G non–linear).
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The dynamic model

Easiest assumption: sources perform a random walk (i.e. they can move a bit); resulting
transition kernel:

p(xt |xt−1) = Pbirth × URgrid
(r

(Nt)
t )N (q

(Nt)
t ; 0,∆)×

Nt−1∏
n=1

N (r
(n)
t+1; r

(n)
t ,∆r )N (q

(n)
t ; q

(n)
t−1,∆q)+

+Pdeath ×
1

Nt−1

Nt−1∑
j=1

Nt−1−1∏
n=1

N (r
(aj,n)
t+1 ; r

(aj,n)
t ,∆r )N (q

(n)
t ; q

(aj,n)
t−1 ,∆q)+

+(1− Pbirth − Pdeath)×
Nt−1∏
n=1

N (r
(n)
t+1; r

(n)
t ,∆r )N (q

(n)
t ; q

(n)
t−1,∆q) .
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It works!

Example: auditory data (from S. et al. 2009)
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Main issue of random walk

Sources tend to move even when they shouldn’t
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Main issue of random walk

Sources tend to move even when they shouldn’t (True and Estimated locations)
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Particle filtering with static model

Want to fix dipoles

p(xt |xt−1) = Pbirth × URgrid
(r

(Nt)
t )N (q

(Nt)
t ; 0,∆)×

Nt−1∏
n=1

δ(r
(n)
t+1; r

(n)
t )N (q

(n)
t ; q

(n)
t−1,∆q)+

+Pdeath ×
1

Nt−1

Nt−1∑
j=1

Nt−1−1∏
n=1

δ(r
(n)
t+1; r

(n)
t )N (q

(n)
t ; q

(aj,n)
t−1 ,∆q)+

+(1− Pbirth − Pdeath)×
Nt−1∏
n=1

δ(r
(n)
t+1; r

(n)
t )N (q

(n)
t ; q

(n)
t−1,∆q) .
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Particle filtering with static model

S. et al. (2013) Annals of Applied Statistics

Some technical details to be adjusted (no bootstrap, different sampler)
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Limitation of Particle Filtering

At source appearance, the filtering distribution

p(xt |y1:t)

has little information on the new source.

This is particularly tedious for some
applications (epilepsy)

Of course there is more information in the
future...
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Particle Smoothing

The smoothing distribution

p(xt |y1:T )

is more difficult to approximate.

Two–filter smoothing relies on:

p(xt |y1:T ) ∝ p(xt |y1:t−1)p(yt:T |xt) (1)

but p(yt:T |xt) is not a pdf in xt .

Introduce auxiliary distributions γt and p̃

p̃(xt |yt:T ) ∝ p(yt:T |xt)γt(xt) ; (2)

to get

p(xt |y1:T ) ∝
p(xt |y1:t−1)p̃(xt |yt:T )

γt(xt)
. (3)
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Particle Smoothing

Two–step recursion for the backward filter:

p̃(xt |yt+1:T ) =

∫
p̃(xt+1|yt+1:T )

p(xt+1|xt)γt(xt)
γt+1(xt+1)

dxt+1 (4)

p̃(xt |yt:T ) =
p(yt |xt)p̃(xt |yt+1:T )∫
p(yt |xt)p̃(xt |yt+1:T )dxt

. (5)

you can use Sequential Monte Carlo to approximate these distributions:

p(x1|y1) → p(x2|y1:2) → . . . → p(xT |y1:T )
↓ ↓ ↓

p(x1|y1:T ) p(x2|y1:T ) p(xT |y1:T )
↑ ↑ ↑

p̃(x1|yT :1) ← p̃(x2|yT :2) ← . . . ← p̃(xT |yT )
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It works (ish)

Vivaldi and S. (2016) Inverse Problems

Using synthetic data, localization error in time:
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In progress

Moving dipoles are not physiologically possible (!)

But maybe movement within a single, functionally homogeneous area makes sense

Use atlases to constrain dynamics

In progress with Valeria Fiori
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The dilemma

Our aim:to approximate the posterior
distribution

p(x |y)

with

x ∈ X :=
⋃

N=0,1,...

{N} ×
(
DN/ ∼

)
and y the electric/magnetic field

But: x and y depend on time! How to treat
this?

1 Dynamic dipole:
Number of dipoles and dipole locations
and moment can change every sampled
time

2 Static dipole:

Only dipole moments change in time
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Bayesian inference of multiple static dipoles

Assume number N of dipoles and dipole locations r (i) do not change in the analysis window;
then the posterior

p(x |y) = p(N, {r (i)}i=1,...,N , {q(i)1:T}i=1,...,N | y1:T )

splits under Gaussian prior for dipole moments

= p({q(i)1:T}i=1,...,N | N, {r (i)}i=1,...,N , y1:T )p(N, {r (i)}i=1,...,N | y1:T )

the conditional posterior for dipole moments is analytically tractable; the remainder can be
sampled with SESAME

S., Luria, Aramini (2014) Inverse Problems, Sommariva and s. (2014) Inverse Problems, Viani et al.
(2021) Inverse Problems and Imaging, Viani et al. (2023) Statistics and Computing
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SESAME (Sequential Semi Analytic MonteCarlo Estimation)

Sequential Monte Carlo algorithm for
estimating dipole locations and moments under
static dipole assumptions.

Iterative procedure resembles regularization
path

Highly stable against hyper-parameter
miss-specification

Python source at
https://pybees.github.io/sesameeg/

Matlab source at
https://github.com/pybees/sesameeg MATLAB

Available as Brainstorm plugin!

Available in BESA Research 7.0 onwards!
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Can it replace manual dipole modelling?

Luria et al. (2020) Brain Topography

• retrospective study,
collaboration with Istituto
Carlo Besta, Milan

• MEG data from 22 epileptic
subjects (lesion/non–lesion,
SEEG/non–SEEG)

• > 1200 spikes analyzed
individually

• manual dipole fitting performed
by experts, used as reference
location

SESAME wMNE

RAP–MUSIC
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Can it replace manual dipole modelling?

Luria et al. (2020) Brain Topography

Discrepancy with Equivalent
Current Dipole fit location:
all spikes (> 1200)

SESAME
RAP–MUSIC
wMNE

> 75% within 1.5 cm from
ECD
RAP–MUSIC second best
(with one dipole)
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An in vivo validation of source localization methods

A. Pascarella et al. (2023) NeuroImage

• Epileptic patients with
implanted SEEG

• Single Pulse Electrical
Stimulation

• HD EEG registration

• true location known
exactly!

• 7 subjects

• open dataset Mikulan et
al. (2020) Scientific
Data
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An in vivo validation of source localization methods

A. Pascarella et al. (2023) NeuroImage

• 10 source localization methods: wMNE, dSPM, sLORETA, eLORETA, MxNE, Gamma Map,
RAP-MUSIC, LCMV beamformer, dipole fitting, SESAME

• various subsampling from 32 to 256 channels

• methods tested with different parameters in comparable ranges

• peak activity selected for each method automatically (automated pipeline)
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An in vivo validation of source localization methods

• focal methods much
better

• older methods less
accurate
(mathematics
matters!)

• little impact of
number of channels

• SESAME ∼ MxNE
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Luria et al. (2019) Journal of Neuroscience Methods

• Applied SESAME to estimate dipoles in frequency bands (instead of time windows)

• Applied SESAME in a dipolar (small N, large q) vs distributed (large N, small q) settings
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Luria et al. (2019) Journal of Neuroscience Methods

Left column: true
sources are dipole
clusters; right
column: true
sources are single
dipoles. Top row:
SESAME with
distributed setting;
bottom row:
SESAME with
dipolar settings.
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Luria et al. (2024) Frontiers

Showcasing multiple alternative solutions
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Bayesian Estimation for Engineering Solutions s.r.l.

• growing need for sound statistical models

• desire to transfer developed methods to
the real world

• startup, born June 2021 as a spinoff of
UNIGE

• explore commercial potential of Bayesian
models and Monte Carlo algorithms

• EEG/MEG data analysis on demand (for
hospitals, etc)

• happy to participate to EU projects

• nothing to do with actual bees...

More at www.bees.srl
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Further developments

Can we...

• Go beyond dipoles to include source extent?

• Distinguish static sources from moving sources?

• Provide Bayesian One-step Connectivity estimates?
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Thanks

Joint work with (among others):

Riccardo Aramini
Cristina Campi
Valeria Fiori
Gianvittorio Luria
Annalisa Pascarella
Michele Piana
Sara Sommariva
Elisabetta Vallarino
Alessandro Viani

Thanks to all of you
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